Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
repsconst |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑆 repeatS 1 ) = ( ( 0 ..^ 1 ) × { 𝑆 } ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = ( ( 0 ..^ 1 ) × { 𝑆 } ) ) |
4 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
5 |
4
|
a1i |
⊢ ( 𝑆 ∈ 𝑉 → ( 0 ..^ 1 ) = { 0 } ) |
6 |
5
|
xpeq1d |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 0 ..^ 1 ) × { 𝑆 } ) = ( { 0 } × { 𝑆 } ) ) |
7 |
|
c0ex |
⊢ 0 ∈ V |
8 |
|
xpsng |
⊢ ( ( 0 ∈ V ∧ 𝑆 ∈ 𝑉 ) → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) |
9 |
7 8
|
mpan |
⊢ ( 𝑆 ∈ 𝑉 → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) |
10 |
3 6 9
|
3eqtrd |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = { 〈 0 , 𝑆 〉 } ) |
11 |
|
s1val |
⊢ ( 𝑆 ∈ 𝑉 → 〈“ 𝑆 ”〉 = { 〈 0 , 𝑆 〉 } ) |
12 |
10 11
|
eqtr4d |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) |