Step |
Hyp |
Ref |
Expression |
1 |
|
df-s2 |
⊢ 〈“ 𝑆 𝑆 ”〉 = ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
|
repswccat |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 1 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) ) |
4 |
2 2 3
|
mp3an23 |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) ) |
5 |
|
repsw1 |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) |
6 |
5 5
|
oveq12d |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) ) |
7 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
8 |
7
|
a1i |
⊢ ( 𝑆 ∈ 𝑉 → ( 1 + 1 ) = 2 ) |
9 |
8
|
oveq2d |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS ( 1 + 1 ) ) = ( 𝑆 repeatS 2 ) ) |
10 |
4 6 9
|
3eqtr3d |
⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) = ( 𝑆 repeatS 2 ) ) |
11 |
1 10
|
eqtr2id |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 2 ) = 〈“ 𝑆 𝑆 ”〉 ) |