Metamath Proof Explorer


Theorem repsw2

Description: The "repeated symbol word" of length two. (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repsw2 ( 𝑆𝑉 → ( 𝑆 repeatS 2 ) = ⟨“ 𝑆 𝑆 ”⟩ )

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“ 𝑆 𝑆 ”⟩ = ( ⟨“ 𝑆 ”⟩ ++ ⟨“ 𝑆 ”⟩ )
2 1nn0 1 ∈ ℕ0
3 repswccat ( ( 𝑆𝑉 ∧ 1 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) )
4 2 2 3 mp3an23 ( 𝑆𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) )
5 repsw1 ( 𝑆𝑉 → ( 𝑆 repeatS 1 ) = ⟨“ 𝑆 ”⟩ )
6 5 5 oveq12d ( 𝑆𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( ⟨“ 𝑆 ”⟩ ++ ⟨“ 𝑆 ”⟩ ) )
7 1p1e2 ( 1 + 1 ) = 2
8 7 a1i ( 𝑆𝑉 → ( 1 + 1 ) = 2 )
9 8 oveq2d ( 𝑆𝑉 → ( 𝑆 repeatS ( 1 + 1 ) ) = ( 𝑆 repeatS 2 ) )
10 4 6 9 3eqtr3d ( 𝑆𝑉 → ( ⟨“ 𝑆 ”⟩ ++ ⟨“ 𝑆 ”⟩ ) = ( 𝑆 repeatS 2 ) )
11 1 10 eqtr2id ( 𝑆𝑉 → ( 𝑆 repeatS 2 ) = ⟨“ 𝑆 𝑆 ”⟩ )