Metamath Proof Explorer


Theorem repswfsts

Description: The first symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repswfsts ( ( 𝑆𝑉𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 0 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑆𝑉𝑁 ∈ ℕ ) → 𝑆𝑉 )
2 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
3 2 adantl ( ( 𝑆𝑉𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
4 lbfzo0 ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ )
5 4 biimpri ( 𝑁 ∈ ℕ → 0 ∈ ( 0 ..^ 𝑁 ) )
6 5 adantl ( ( 𝑆𝑉𝑁 ∈ ℕ ) → 0 ∈ ( 0 ..^ 𝑁 ) )
7 repswsymb ( ( 𝑆𝑉𝑁 ∈ ℕ0 ∧ 0 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 0 ) = 𝑆 )
8 1 3 6 7 syl3anc ( ( 𝑆𝑉𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 0 ) = 𝑆 )