Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
2 |
|
repsw |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
4 |
|
lsw |
⊢ ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) ) |
6 |
|
simpl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ 𝑉 ) |
7 |
1
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
8 |
|
repswlen |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
9 |
1 8
|
sylan2 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) = ( 𝑁 − 1 ) ) |
11 |
|
fzo0end |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
13 |
10 12
|
eqeltrd |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
14 |
|
repswsymb |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) = 𝑆 ) |
15 |
6 7 13 14
|
syl3anc |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) = 𝑆 ) |
16 |
5 15
|
eqtrd |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑆 ) |