Metamath Proof Explorer


Theorem repswsymb

Description: The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repswsymb ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝐼 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 reps ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) )
2 1 3adant3 ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) )
3 eqidd ( ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 = 𝐼 ) → 𝑆 = 𝑆 )
4 simp3 ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) → 𝐼 ∈ ( 0 ..^ 𝑁 ) )
5 simp1 ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆𝑉 )
6 2 3 4 5 fvmptd ( ( 𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝐼 ) = 𝑆 )