Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
3 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
4 |
3
|
anim1ci |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
5 |
|
repsdf2 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |
8 |
|
eqidd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) |
9 |
7 8
|
jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ) |
10 |
9
|
biantrurd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
11 |
2 6 10
|
3bitr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |
12 |
11
|
biimpd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |