Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ∅ ) ) |
2 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = 0 ) |
4 |
|
fvex |
⊢ ( 𝑊 ‘ 0 ) ∈ V |
5 |
|
repsw0 |
⊢ ( ( 𝑊 ‘ 0 ) ∈ V → ( ( 𝑊 ‘ 0 ) repeatS 0 ) = ∅ ) |
6 |
4 5
|
ax-mp |
⊢ ( ( 𝑊 ‘ 0 ) repeatS 0 ) = ∅ |
7 |
6
|
eqcomi |
⊢ ∅ = ( ( 𝑊 ‘ 0 ) repeatS 0 ) |
8 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → 𝑊 = ∅ ) |
9 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) = ( ( 𝑊 ‘ 0 ) repeatS 0 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) = ( ( 𝑊 ‘ 0 ) repeatS 0 ) ) |
11 |
7 8 10
|
3eqtr4a |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) |
12 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) |
13 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 0 ) ) |
14 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) |
16 |
15
|
raleqdv |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
17 |
12 16
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
19 |
11 18
|
2thd |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
20 |
3 19
|
mpancom |
⊢ ( 𝑊 = ∅ → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
21 |
20
|
a1d |
⊢ ( 𝑊 = ∅ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
22 |
|
df-3an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
23 |
22
|
a1i |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
24 |
|
fstwrdne |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
25 |
24
|
ancoms |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
26 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
27 |
26
|
adantl |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
28 |
|
repsdf2 |
⊢ ( ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
29 |
25 27 28
|
syl2anc |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
30 |
|
simpr |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |
31 |
|
eqidd |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) |
32 |
30 31
|
jca |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ) |
33 |
32
|
biantrurd |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
34 |
23 29 33
|
3bitr4d |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
35 |
34
|
ex |
⊢ ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
36 |
21 35
|
pm2.61ine |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |