Step |
Hyp |
Ref |
Expression |
1 |
|
rrnequiv.y |
⊢ 𝑌 = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) |
2 |
|
rrnequiv.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
3 |
|
rrnequiv.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
4 |
|
fconstmpt |
⊢ ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) = ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) |
5 |
4
|
oveq2i |
⊢ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) = ( ( Scalar ‘ ℂfld ) Xs ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) ) |
6 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
7 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
8 |
|
eqid |
⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) |
9 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
10 |
8 9
|
ressbas2 |
⊢ ( ℝ ⊆ ℂ → ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) ) |
11 |
7 10
|
ax-mp |
⊢ ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
14 |
8 13
|
ressds |
⊢ ( ℝ ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) ) |
15 |
12 14
|
ax-mp |
⊢ ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) |
16 |
15
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ( ℂfld ↾s ℝ ) ) ↾ ( ℝ × ℝ ) ) |
17 |
|
eqid |
⊢ ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
18 |
|
fvexd |
⊢ ( 𝐼 ∈ Fin → ( Scalar ‘ ℂfld ) ∈ V ) |
19 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
20 |
|
ovex |
⊢ ( ℂfld ↾s ℝ ) ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼 ) → ( ℂfld ↾s ℝ ) ∈ V ) |
22 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
23 |
22
|
remet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
24 |
23
|
a1i |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼 ) → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ) |
25 |
5 6 11 16 17 18 19 21 24
|
prdsmet |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ∈ ( Met ‘ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) ) |
26 |
|
eqid |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ℂfld ) |
27 |
8 26
|
resssca |
⊢ ( ℝ ∈ V → ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) ) |
28 |
12 27
|
ax-mp |
⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) |
29 |
1 28
|
pwsval |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
30 |
20 29
|
mpan |
⊢ ( 𝐼 ∈ Fin → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
32 |
2 31
|
syl5eq |
⊢ ( 𝐼 ∈ Fin → 𝐷 = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
33 |
1 11
|
pwsbas |
⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
34 |
20 33
|
mpan |
⊢ ( 𝐼 ∈ Fin → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
35 |
30
|
fveq2d |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
36 |
34 35
|
eqtrd |
⊢ ( 𝐼 ∈ Fin → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
37 |
3 36
|
syl5eq |
⊢ ( 𝐼 ∈ Fin → 𝑋 = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝐼 ∈ Fin → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) ) |
39 |
25 32 38
|
3eltr4d |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |