| Step |
Hyp |
Ref |
Expression |
| 1 |
|
requad2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
requad2.z |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
|
requad2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
requad2.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 5 |
|
requad2.d |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
| 6 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 7 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐴 ∈ ℂ ) |
| 8 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐴 ≠ 0 ) |
| 9 |
3
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐵 ∈ ℂ ) |
| 11 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐶 ∈ ℂ ) |
| 13 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝑝 ∧ 𝑝 ∈ 𝒫 ℝ ) → 𝑥 ∈ ℝ ) |
| 14 |
13
|
expcom |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( 𝑥 ∈ 𝑝 → 𝑥 ∈ ℝ ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( 𝑥 ∈ 𝑝 → 𝑥 ∈ ℝ ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝑥 ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝑥 ∈ ℂ ) |
| 18 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐷 = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
| 19 |
7 8 10 12 17 18
|
quad |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
| 20 |
19
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
| 21 |
20
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) ) |
| 22 |
21
|
reubidva |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) ) |
| 23 |
|
eqid |
⊢ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } = { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } |
| 24 |
23
|
pairreueq |
⊢ ( ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ↔ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
| 25 |
24
|
bicomi |
⊢ ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
| 27 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → - 𝐵 ∈ ℝ ) |
| 29 |
3
|
resqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 30 |
|
4re |
⊢ 4 ∈ ℝ |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 32 |
1 4
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 33 |
31 32
|
remulcld |
⊢ ( 𝜑 → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℝ ) |
| 34 |
29 33
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ∈ ℝ ) |
| 35 |
5 34
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 0 ≤ 𝐷 ) |
| 38 |
36 37
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
| 39 |
28 38
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
| 40 |
|
2re |
⊢ 2 ∈ ℝ |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 42 |
41 1
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℝ ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 44 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 46 |
|
mulne0 |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 2 · 𝐴 ) ≠ 0 ) |
| 47 |
45 6 2 46
|
syl12anc |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ≠ 0 ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ≠ 0 ) |
| 49 |
39 43 48
|
redivcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐵 ∈ ℝ ) |
| 51 |
50
|
renegcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → - 𝐵 ∈ ℝ ) |
| 52 |
51 38
|
resubcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
| 53 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 2 ∈ ℝ ) |
| 54 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 55 |
53 54
|
remulcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 56 |
52 55 48
|
redivcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 57 |
|
fveqeq2 |
⊢ ( 𝑞 = 𝑥 → ( ( ♯ ‘ 𝑞 ) = 2 ↔ ( ♯ ‘ 𝑥 ) = 2 ) ) |
| 58 |
57
|
cbvrabv |
⊢ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } = { 𝑥 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 59 |
49 56 58
|
paireqne |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ↔ ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) |
| 60 |
9
|
negcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℂ ) |
| 61 |
35
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 62 |
61
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐷 ) ∈ ℂ ) |
| 63 |
60 62
|
addcld |
⊢ ( 𝜑 → ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
| 64 |
60 62
|
subcld |
⊢ ( 𝜑 → ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
| 65 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 66 |
65 6
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℂ ) |
| 67 |
|
div11 |
⊢ ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℂ ∧ ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℂ ∧ ( ( 2 · 𝐴 ) ∈ ℂ ∧ ( 2 · 𝐴 ) ≠ 0 ) ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) ) |
| 68 |
63 64 66 47 67
|
syl112anc |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) ) |
| 69 |
60 62
|
negsubd |
⊢ ( 𝜑 → ( - 𝐵 + - ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) |
| 70 |
69
|
eqcomd |
⊢ ( 𝜑 → ( - 𝐵 − ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ) |
| 71 |
70
|
eqeq2d |
⊢ ( 𝜑 → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ) ) |
| 72 |
62
|
negcld |
⊢ ( 𝜑 → - ( √ ‘ 𝐷 ) ∈ ℂ ) |
| 73 |
60 62 72
|
addcand |
⊢ ( 𝜑 → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ↔ ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ) ) |
| 74 |
68 71 73
|
3bitrd |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ) ) |
| 75 |
74
|
necon3bid |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ) ) |
| 77 |
|
cnsqrt00 |
⊢ ( 𝐷 ∈ ℂ → ( ( √ ‘ 𝐷 ) = 0 ↔ 𝐷 = 0 ) ) |
| 78 |
61 77
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) = 0 ↔ 𝐷 = 0 ) ) |
| 79 |
78
|
necon3bid |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) ≠ 0 ↔ 𝐷 ≠ 0 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ 0 ↔ 𝐷 ≠ 0 ) ) |
| 81 |
62
|
eqnegd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) = 0 ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) = 0 ) ) |
| 83 |
82
|
necon3bid |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) ≠ 0 ) ) |
| 84 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 0 ∈ ℝ ) |
| 85 |
84 36 37
|
leltned |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 0 < 𝐷 ↔ 𝐷 ≠ 0 ) ) |
| 86 |
80 83 85
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ↔ 0 < 𝐷 ) ) |
| 87 |
76 86
|
bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ 0 < 𝐷 ) ) |
| 88 |
26 59 87
|
3bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ 0 < 𝐷 ) ) |
| 89 |
22 88
|
bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |
| 90 |
89
|
expcom |
⊢ ( 0 ≤ 𝐷 → ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) ) |
| 91 |
|
hash2prb |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ) |
| 93 |
|
raleq |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
| 94 |
|
vex |
⊢ 𝑎 ∈ V |
| 95 |
|
vex |
⊢ 𝑏 ∈ V |
| 96 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
| 97 |
96
|
oveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑎 ↑ 2 ) ) ) |
| 98 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑎 ) ) |
| 99 |
98
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐵 · 𝑥 ) + 𝐶 ) = ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) |
| 100 |
97 99
|
oveq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) ) |
| 101 |
100
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ) ) |
| 102 |
|
oveq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 103 |
102
|
oveq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑏 ↑ 2 ) ) ) |
| 104 |
|
oveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑏 ) ) |
| 105 |
104
|
oveq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐵 · 𝑥 ) + 𝐶 ) = ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) |
| 106 |
103 105
|
oveq12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) ) |
| 107 |
106
|
eqeq1d |
⊢ ( 𝑥 = 𝑏 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
| 108 |
94 95 101 107
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
| 109 |
93 108
|
bitrdi |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
| 111 |
110
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
| 112 |
|
elelpwi |
⊢ ( ( 𝑏 ∈ 𝑝 ∧ 𝑝 ∈ 𝒫 ℝ ) → 𝑏 ∈ ℝ ) |
| 113 |
112
|
ex |
⊢ ( 𝑏 ∈ 𝑝 → ( 𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ ) ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → ( 𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ ) ) |
| 115 |
114
|
com12 |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → 𝑏 ∈ ℝ ) ) |
| 116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → 𝑏 ∈ ℝ ) ) |
| 117 |
116
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → 𝑏 ∈ ℝ ) |
| 118 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝐴 · ( 𝑦 ↑ 2 ) ) = ( 𝐴 · ( 𝑏 ↑ 2 ) ) ) |
| 120 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑏 ) ) |
| 121 |
120
|
oveq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐵 · 𝑦 ) + 𝐶 ) = ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) |
| 122 |
119 121
|
oveq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) ) |
| 123 |
122
|
eqeq1d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
| 124 |
123
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ 𝑦 = 𝑏 ) → ( ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
| 125 |
117 124
|
rspcedv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → ( ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 127 |
126
|
adantld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 128 |
111 127
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 129 |
128
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
| 130 |
129
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
| 131 |
92 130
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ♯ ‘ 𝑝 ) = 2 → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
| 132 |
131
|
impd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 133 |
132
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
| 134 |
1 2 3 4 5
|
requad01 |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ 0 ≤ 𝐷 ) ) |
| 135 |
133 134
|
sylibd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → 0 ≤ 𝐷 ) ) |
| 136 |
135
|
con3d |
⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐷 → ¬ ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
| 137 |
136
|
impcom |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ¬ ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
| 138 |
|
reurex |
⊢ ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
| 139 |
137 138
|
nsyl |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ¬ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
| 140 |
139
|
pm2.21d |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → 0 < 𝐷 ) ) |
| 141 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 142 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 0 < 𝐷 → 0 ≤ 𝐷 ) ) |
| 143 |
141 35 142
|
syl2anc |
⊢ ( 𝜑 → ( 0 < 𝐷 → 0 ≤ 𝐷 ) ) |
| 144 |
|
pm2.24 |
⊢ ( 0 ≤ 𝐷 → ( ¬ 0 ≤ 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
| 145 |
143 144
|
syl6 |
⊢ ( 𝜑 → ( 0 < 𝐷 → ( ¬ 0 ≤ 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) ) |
| 146 |
145
|
com23 |
⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐷 → ( 0 < 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) ) |
| 147 |
146
|
impcom |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( 0 < 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
| 148 |
140 147
|
impbid |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |
| 149 |
148
|
ex |
⊢ ( ¬ 0 ≤ 𝐷 → ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) ) |
| 150 |
90 149
|
pm2.61i |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |