Metamath Proof Explorer


Theorem rere

Description: A real number equals its real part. One direction of Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion rere ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 rereb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) )
4 3 ibi ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 )