Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
3 |
|
reim0 |
⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) |
4 |
3
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · 0 ) ) |
5 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 ∈ ℝ → ( i · ( ℑ ‘ 𝐴 ) ) = 0 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( i · ( ℑ ‘ 𝐴 ) ) = 0 ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + 0 ) ) |
9 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
11 |
10
|
addid1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
13 |
2 8 12
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
14 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
15 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
16 |
14 15
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 𝐴 ) → 𝐴 ∈ ℝ ) |
17 |
13 16
|
impbida |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) |