Metamath Proof Explorer


Theorem rerebd

Description: A real number equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 ( 𝜑𝐴 ∈ ℂ )
rerebd.2 ( 𝜑 → ( ℜ ‘ 𝐴 ) = 𝐴 )
Assertion rerebd ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 recld.1 ( 𝜑𝐴 ∈ ℂ )
2 rerebd.2 ( 𝜑 → ( ℜ ‘ 𝐴 ) = 𝐴 )
3 rereb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) )
4 1 3 syl ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) )
5 2 4 mpbird ( 𝜑𝐴 ∈ ℝ )