Metamath Proof Explorer


Theorem rerebi

Description: A real number equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 27-Oct-1999)

Ref Expression
Hypothesis recl.1 𝐴 ∈ ℂ
Assertion rerebi ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 recl.1 𝐴 ∈ ℂ
2 rereb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) )
3 1 2 ax-mp ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 )