Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| rereccl.2 | ⊢ 𝐴 ≠ 0 | ||
| Assertion | rereccli | ⊢ ( 1 / 𝐴 ) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | rereccl.2 | ⊢ 𝐴 ≠ 0 | |
| 3 | 1 | rerecclzi | ⊢ ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ ) |
| 4 | 2 3 | ax-mp | ⊢ ( 1 / 𝐴 ) ∈ ℝ |