Metamath Proof Explorer


Theorem rereccli

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)

Ref Expression
Hypotheses redivcl.1 𝐴 ∈ ℝ
rereccl.2 𝐴 ≠ 0
Assertion rereccli ( 1 / 𝐴 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 redivcl.1 𝐴 ∈ ℝ
2 rereccl.2 𝐴 ≠ 0
3 1 rerecclzi ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ )
4 2 3 ax-mp ( 1 / 𝐴 ) ∈ ℝ