Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| Assertion | rerecclzi | ⊢ ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ ) |