Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
Assertion | rerecclzi | ⊢ ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
2 | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ ) |