Metamath Proof Explorer


Theorem rerecclzi

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)

Ref Expression
Hypothesis redivcl.1 𝐴 ∈ ℝ
Assertion rerecclzi ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 redivcl.1 𝐴 ∈ ℝ
2 rereccl ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ )
3 1 2 mpan ( 𝐴 ≠ 0 → ( 1 / 𝐴 ) ∈ ℝ )