Metamath Proof Explorer


Theorem rerest

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses tgioo2.1 𝐽 = ( TopOpen ‘ ℂfld )
rerest.2 𝑅 = ( topGen ‘ ran (,) )
Assertion rerest ( 𝐴 ⊆ ℝ → ( 𝐽t 𝐴 ) = ( 𝑅t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 tgioo2.1 𝐽 = ( TopOpen ‘ ℂfld )
2 rerest.2 𝑅 = ( topGen ‘ ran (,) )
3 1 tgioo2 ( topGen ‘ ran (,) ) = ( 𝐽t ℝ )
4 2 3 eqtri 𝑅 = ( 𝐽t ℝ )
5 4 oveq1i ( 𝑅t 𝐴 ) = ( ( 𝐽t ℝ ) ↾t 𝐴 )
6 1 cnfldtop 𝐽 ∈ Top
7 reex ℝ ∈ V
8 restabs ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽t ℝ ) ↾t 𝐴 ) = ( 𝐽t 𝐴 ) )
9 6 7 8 mp3an13 ( 𝐴 ⊆ ℝ → ( ( 𝐽t ℝ ) ↾t 𝐴 ) = ( 𝐽t 𝐴 ) )
10 5 9 eqtr2id ( 𝐴 ⊆ ℝ → ( 𝐽t 𝐴 ) = ( 𝑅t 𝐴 ) )