Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| rerest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | ||
| Assertion | rerest | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | rerest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| 3 | 1 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |
| 4 | 2 3 | eqtri | ⊢ 𝑅 = ( 𝐽 ↾t ℝ ) |
| 5 | 4 | oveq1i | ⊢ ( 𝑅 ↾t 𝐴 ) = ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) |
| 6 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 7 | reex | ⊢ ℝ ∈ V | |
| 8 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) | |
| 9 | 6 7 8 | mp3an13 | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
| 10 | 5 9 | eqtr2id | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |