Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
rerest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | ||
Assertion | rerest | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
2 | rerest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
3 | 1 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |
4 | 2 3 | eqtri | ⊢ 𝑅 = ( 𝐽 ↾t ℝ ) |
5 | 4 | oveq1i | ⊢ ( 𝑅 ↾t 𝐴 ) = ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) |
6 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
7 | reex | ⊢ ℝ ∈ V | |
8 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) | |
9 | 6 7 8 | mp3an13 | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐽 ↾t ℝ ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
10 | 5 9 | eqtr2id | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |