Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rerisefaccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
2 | 1re | ⊢ 1 ∈ ℝ | |
3 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
4 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
5 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) | |
6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
7 | 1 2 3 6 | risefaccllem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ ) |