Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | res0 | ⊢ ( 𝐴 ↾ ∅ ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝐴 ↾ ∅ ) = ( 𝐴 ∩ ( ∅ × V ) ) | |
| 2 | 0xp | ⊢ ( ∅ × V ) = ∅ | |
| 3 | 2 | ineq2i | ⊢ ( 𝐴 ∩ ( ∅ × V ) ) = ( 𝐴 ∩ ∅ ) |
| 4 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 5 | 1 3 4 | 3eqtri | ⊢ ( 𝐴 ↾ ∅ ) = ∅ |