Description: Absorption law for restriction. Exercise 17 of TakeutiZaring p. 25. (Contributed by NM, 9-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | resabs1 | ⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres | ⊢ ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) | |
2 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐶 ∩ 𝐵 ) = 𝐵 ) | |
3 | reseq2 | ⊢ ( ( 𝐶 ∩ 𝐵 ) = 𝐵 → ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) ) | |
4 | 2 3 | sylbi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) ) |
5 | 1 4 | eqtrid | ⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) ) |