Metamath Proof Explorer


Theorem resabs1

Description: Absorption law for restriction. Exercise 17 of TakeutiZaring p. 25. (Contributed by NM, 9-Aug-1994)

Ref Expression
Assertion resabs1 ( 𝐵𝐶 → ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 resres ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶𝐵 ) )
2 sseqin2 ( 𝐵𝐶 ↔ ( 𝐶𝐵 ) = 𝐵 )
3 reseq2 ( ( 𝐶𝐵 ) = 𝐵 → ( 𝐴 ↾ ( 𝐶𝐵 ) ) = ( 𝐴𝐵 ) )
4 2 3 sylbi ( 𝐵𝐶 → ( 𝐴 ↾ ( 𝐶𝐵 ) ) = ( 𝐴𝐵 ) )
5 1 4 eqtrid ( 𝐵𝐶 → ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴𝐵 ) )