Metamath Proof Explorer


Theorem resabs1i

Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis resabs1i.1 𝐵𝐶
Assertion resabs1i ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 resabs1i.1 𝐵𝐶
2 resabs1 ( 𝐵𝐶 → ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴𝐵 ) )
3 1 2 ax-mp ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴𝐵 )