Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
2 |
|
fnresdm |
⊢ ( 𝐺 Fn 𝐵 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
3 |
|
uneq12 |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) = 𝐹 ∧ ( 𝐺 ↾ 𝐵 ) = 𝐺 ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
6 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
7 |
6
|
reseq2i |
⊢ ( 𝐹 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐹 ↾ 𝐴 ) |
8 |
|
resundi |
⊢ ( 𝐹 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
9 |
7 8
|
eqtr3i |
⊢ ( 𝐹 ↾ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
10 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
11 |
10
|
uneq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
12 |
|
inundif |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
13 |
11 12
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
14 |
13
|
reseq2i |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ 𝐵 ) |
15 |
|
resundi |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
16 |
14 15
|
eqtr3i |
⊢ ( 𝐺 ↾ 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
17 |
9 16
|
uneq12i |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
18 |
|
simp3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
19 |
18
|
uneq1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
20 |
19
|
uneq2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
21 |
17 20
|
eqtr4id |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
22 |
|
un4 |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
24 |
|
unidm |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) |
25 |
24
|
uneq1i |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
26 |
23 25
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
27 |
5 26
|
eqtr3d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |