| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fnresdm | 
							⊢ ( 𝐹  Fn  𝐴  →  ( 𝐹  ↾  𝐴 )  =  𝐹 )  | 
						
						
							| 2 | 
							
								
							 | 
							fnresdm | 
							⊢ ( 𝐺  Fn  𝐵  →  ( 𝐺  ↾  𝐵 )  =  𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							uneq12 | 
							⊢ ( ( ( 𝐹  ↾  𝐴 )  =  𝐹  ∧  ( 𝐺  ↾  𝐵 )  =  𝐺 )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( 𝐹  ∪  𝐺 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵 )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( 𝐹  ∪  𝐺 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3 | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( 𝐹  ∪  𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							inundif | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴  | 
						
						
							| 7 | 
							
								6
							 | 
							reseq2i | 
							⊢ ( 𝐹  ↾  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( 𝐹  ↾  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							resundi | 
							⊢ ( 𝐹  ↾  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr3i | 
							⊢ ( 𝐹  ↾  𝐴 )  =  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐴  ∩  𝐵 )  =  ( 𝐵  ∩  𝐴 )  | 
						
						
							| 11 | 
							
								10
							 | 
							uneq1i | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) )  =  ( ( 𝐵  ∩  𝐴 )  ∪  ( 𝐵  ∖  𝐴 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							inundif | 
							⊢ ( ( 𝐵  ∩  𝐴 )  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtri | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵  | 
						
						
							| 14 | 
							
								13
							 | 
							reseq2i | 
							⊢ ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) ) )  =  ( 𝐺  ↾  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							resundi | 
							⊢ ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) ) )  =  ( ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtr3i | 
							⊢ ( 𝐺  ↾  𝐵 )  =  ( ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							uneq12i | 
							⊢ ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  ∪  ( ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							uneq1d | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) )  =  ( ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							uneq2d | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  =  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  ∪  ( ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							eqtr4id | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							un4 | 
							⊢ ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  =  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtrdi | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							unidm | 
							⊢ ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) ) )  =  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							uneq1i | 
							⊢ ( ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  =  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							eqtrdi | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  𝐴 )  ∪  ( 𝐺  ↾  𝐵 ) )  =  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) ) )  | 
						
						
							| 27 | 
							
								5 26
							 | 
							eqtr3d | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐹  ∪  𝐺 )  =  ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  ∪  ( ( 𝐹  ↾  ( 𝐴  ∖  𝐵 ) )  ∪  ( 𝐺  ↾  ( 𝐵  ∖  𝐴 ) ) ) ) )  |