| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 2 |
|
fnresdm |
⊢ ( 𝐺 Fn 𝐵 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 3 |
|
uneq12 |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) = 𝐹 ∧ ( 𝐺 ↾ 𝐵 ) = 𝐺 ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( 𝐹 ∪ 𝐺 ) ) |
| 6 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 7 |
6
|
reseq2i |
⊢ ( 𝐹 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐹 ↾ 𝐴 ) |
| 8 |
|
resundi |
⊢ ( 𝐹 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
| 9 |
7 8
|
eqtr3i |
⊢ ( 𝐹 ↾ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
| 10 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 11 |
10
|
uneq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 12 |
|
inundif |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 13 |
11 12
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 14 |
13
|
reseq2i |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ 𝐵 ) |
| 15 |
|
resundi |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 16 |
14 15
|
eqtr3i |
⊢ ( 𝐺 ↾ 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 17 |
9 16
|
uneq12i |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 18 |
|
simp3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 19 |
18
|
uneq1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 20 |
19
|
uneq2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 21 |
17 20
|
eqtr4id |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 22 |
|
un4 |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 24 |
|
unidm |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) |
| 25 |
24
|
uneq1i |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 26 |
23 25
|
eqtrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐴 ) ∪ ( 𝐺 ↾ 𝐵 ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 27 |
5 26
|
eqtr3d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |