| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescabs.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 2 |
|
rescabs.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 3 |
|
rescabs.j |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| 4 |
|
rescabs.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 5 |
|
rescabs.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
| 6 |
|
eqid |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) |
| 7 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 8 |
4 5
|
ssexd |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 9 |
6 7 8 3
|
rescval2 |
⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) |
| 11 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 13 |
|
eqid |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) |
| 14 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 15 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
| 16 |
15
|
simp1i |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 17 |
14 16
|
setsnid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 18 |
13 17
|
ressid2 |
⊢ ( ( ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 19 |
10 11 12 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 21 |
|
ovex |
⊢ ( 𝐶 ↾s 𝑆 ) ∈ V |
| 22 |
8 8
|
xpexd |
⊢ ( 𝜑 → ( 𝑇 × 𝑇 ) ∈ V ) |
| 23 |
3 22
|
fnexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 25 |
|
setsabs |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 26 |
21 24 25
|
sylancr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 27 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 29 |
27 28
|
ressbas |
⊢ ( 𝑆 ∈ 𝑊 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 30 |
4 29
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 31 |
30
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ↔ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) ) |
| 32 |
31
|
biimpar |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ) |
| 33 |
|
inss2 |
⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 35 |
32 34
|
ssind |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 37 |
36
|
ssrind |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) |
| 38 |
35 37
|
eqssd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 40 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑆 ∈ 𝑊 ) |
| 41 |
28
|
ressinbas |
⊢ ( 𝑆 ∈ 𝑊 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 43 |
28
|
ressinbas |
⊢ ( 𝑇 ∈ V → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 44 |
12 43
|
syl |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 45 |
39 42 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 47 |
20 26 46
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) |
| 49 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 50 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 51 |
13 17
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 52 |
48 49 50 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 53 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) ∈ V ) |
| 54 |
16
|
necomi |
⊢ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 56 |
4 4
|
xpexd |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
| 57 |
2 56
|
fnexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐻 ∈ V ) |
| 59 |
|
fvex |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ∈ V |
| 60 |
59
|
inex2 |
⊢ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V |
| 61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) |
| 62 |
|
fvex |
⊢ ( Hom ‘ ndx ) ∈ V |
| 63 |
|
fvex |
⊢ ( Base ‘ ndx ) ∈ V |
| 64 |
62 63
|
setscom |
⊢ ( ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( 𝐻 ∈ V ∧ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 65 |
53 55 58 61 64
|
syl22anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 66 |
|
eqid |
⊢ ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) |
| 67 |
|
eqid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) |
| 68 |
66 67
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 69 |
48 53 50 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 70 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 71 |
|
ressabs |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 72 |
4 70 71
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 73 |
69 72
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 75 |
52 65 74
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 76 |
75
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 77 |
|
ovex |
⊢ ( 𝐶 ↾s 𝑇 ) ∈ V |
| 78 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 79 |
|
setsabs |
⊢ ( ( ( 𝐶 ↾s 𝑇 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 80 |
77 78 79
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 81 |
76 80
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 82 |
47 81
|
pm2.61dan |
⊢ ( 𝜑 → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 83 |
9 82
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 84 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) |
| 85 |
84 1 4 2
|
rescval2 |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) ) |
| 87 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) |
| 88 |
87 1 8 3
|
rescval2 |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 89 |
83 86 88
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |