| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescabs.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 2 |
|
rescabs.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 3 |
|
rescabs.j |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| 4 |
|
rescabs.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 5 |
|
rescabs.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
| 6 |
|
eqid |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) |
| 7 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 8 |
4 5
|
ssexd |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 9 |
6 7 8 3
|
rescval2 |
⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) |
| 11 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 13 |
|
eqid |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) |
| 14 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 15 |
|
1re |
⊢ 1 ∈ ℝ |
| 16 |
|
1nn |
⊢ 1 ∈ ℕ |
| 17 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 18 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 19 |
|
1lt10 |
⊢ 1 < ; 1 0 |
| 20 |
16 17 18 19
|
declti |
⊢ 1 < ; 1 4 |
| 21 |
15 20
|
ltneii |
⊢ 1 ≠ ; 1 4 |
| 22 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
| 23 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
| 24 |
22 23
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 ≠ ; 1 4 ) |
| 25 |
21 24
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 26 |
14 25
|
setsnid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 27 |
13 26
|
ressid2 |
⊢ ( ( ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 28 |
10 11 12 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 30 |
|
ovex |
⊢ ( 𝐶 ↾s 𝑆 ) ∈ V |
| 31 |
8 8
|
xpexd |
⊢ ( 𝜑 → ( 𝑇 × 𝑇 ) ∈ V ) |
| 32 |
|
fnex |
⊢ ( ( 𝐽 Fn ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ∈ V ) → 𝐽 ∈ V ) |
| 33 |
3 31 32
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 35 |
|
setsabs |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 36 |
30 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 37 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
| 38 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 39 |
37 38
|
ressbas |
⊢ ( 𝑆 ∈ 𝑊 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 40 |
4 39
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 41 |
40
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ↔ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) ) |
| 42 |
41
|
biimpar |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ) |
| 43 |
|
inss2 |
⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) |
| 44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 45 |
42 44
|
ssind |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 47 |
46
|
ssrind |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) |
| 48 |
45 47
|
eqssd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑆 ∈ 𝑊 ) |
| 51 |
38
|
ressinbas |
⊢ ( 𝑆 ∈ 𝑊 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 53 |
38
|
ressinbas |
⊢ ( 𝑇 ∈ V → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 54 |
12 53
|
syl |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 55 |
49 52 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 57 |
29 36 56
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 58 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) |
| 59 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) |
| 60 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 61 |
13 26
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 62 |
58 59 60 61
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 63 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) ∈ V ) |
| 64 |
25
|
necomi |
⊢ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 66 |
4 4
|
xpexd |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
| 67 |
|
fnex |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) |
| 68 |
2 66 67
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐻 ∈ V ) |
| 70 |
|
fvex |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ∈ V |
| 71 |
70
|
inex2 |
⊢ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V |
| 72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) |
| 73 |
|
fvex |
⊢ ( Hom ‘ ndx ) ∈ V |
| 74 |
|
fvex |
⊢ ( Base ‘ ndx ) ∈ V |
| 75 |
73 74
|
setscom |
⊢ ( ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( 𝐻 ∈ V ∧ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 76 |
63 65 69 72 75
|
syl22anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 77 |
|
eqid |
⊢ ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) |
| 78 |
|
eqid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) |
| 79 |
77 78
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 80 |
58 63 60 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 81 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑆 ∈ 𝑊 ) |
| 82 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 83 |
|
ressabs |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 84 |
81 82 83
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 85 |
80 84
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 87 |
62 76 86
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 88 |
87
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 89 |
|
ovex |
⊢ ( 𝐶 ↾s 𝑇 ) ∈ V |
| 90 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 91 |
|
setsabs |
⊢ ( ( ( 𝐶 ↾s 𝑇 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 92 |
89 90 91
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 93 |
88 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 94 |
57 93
|
pm2.61dan |
⊢ ( 𝜑 → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 95 |
9 94
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 96 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) |
| 97 |
96 1 4 2
|
rescval2 |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 98 |
97
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) ) |
| 99 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) |
| 100 |
99 1 8 3
|
rescval2 |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 101 |
95 98 100
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |