| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescbas.d | ⊢ 𝐷  =  ( 𝐶  ↾cat  𝐻 ) | 
						
							| 2 |  | rescbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | rescbas.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | rescbas.h | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝑆  ×  𝑆 ) ) | 
						
							| 5 |  | rescbas.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 7 |  | slotsbhcdif | ⊢ ( ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx )  ∧  ( Base ‘ ndx )  ≠  ( comp ‘ ndx )  ∧  ( Hom  ‘ ndx )  ≠  ( comp ‘ ndx ) ) | 
						
							| 8 | 7 | simp1i | ⊢ ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx ) | 
						
							| 9 | 6 8 | setsnid | ⊢ ( Base ‘ ( 𝐶  ↾s  𝑆 ) )  =  ( Base ‘ ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  𝑆 ) | 
						
							| 11 | 10 2 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( 𝐶  ↾s  𝑆 ) ) ) | 
						
							| 13 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 14 | 13 | ssex | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ∈  V ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 16 | 1 3 15 4 | rescval2 | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐷 )  =  ( Base ‘ ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) ) | 
						
							| 18 | 9 12 17 | 3eqtr4a | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ 𝐷 ) ) |