Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
rescbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rescbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
rescbas.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
rescbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
6 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
7 |
|
1re |
⊢ 1 ∈ ℝ |
8 |
|
1nn |
⊢ 1 ∈ ℕ |
9 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
10 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
11 |
|
1lt10 |
⊢ 1 < ; 1 0 |
12 |
8 9 10 11
|
declti |
⊢ 1 < ; 1 4 |
13 |
7 12
|
ltneii |
⊢ 1 ≠ ; 1 4 |
14 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
15 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
16 |
14 15
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 ≠ ; 1 4 ) |
17 |
13 16
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
18 |
6 17
|
setsnid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
19 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
20 |
19 2
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
21 |
5 20
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
22 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
23 |
22
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
25 |
1 3 24 4
|
rescval2 |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
27 |
18 21 26
|
3eqtr4a |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |