Metamath Proof Explorer


Theorem rescbas

Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescbas.d 𝐷 = ( 𝐶cat 𝐻 )
rescbas.b 𝐵 = ( Base ‘ 𝐶 )
rescbas.c ( 𝜑𝐶𝑉 )
rescbas.h ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
rescbas.s ( 𝜑𝑆𝐵 )
Assertion rescbas ( 𝜑𝑆 = ( Base ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 rescbas.d 𝐷 = ( 𝐶cat 𝐻 )
2 rescbas.b 𝐵 = ( Base ‘ 𝐶 )
3 rescbas.c ( 𝜑𝐶𝑉 )
4 rescbas.h ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
5 rescbas.s ( 𝜑𝑆𝐵 )
6 baseid Base = Slot ( Base ‘ ndx )
7 1re 1 ∈ ℝ
8 1nn 1 ∈ ℕ
9 4nn0 4 ∈ ℕ0
10 1nn0 1 ∈ ℕ0
11 1lt10 1 < 1 0
12 8 9 10 11 declti 1 < 1 4
13 7 12 ltneii 1 ≠ 1 4
14 basendx ( Base ‘ ndx ) = 1
15 homndx ( Hom ‘ ndx ) = 1 4
16 14 15 neeq12i ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 ≠ 1 4 )
17 13 16 mpbir ( Base ‘ ndx ) ≠ ( Hom ‘ ndx )
18 6 17 setsnid ( Base ‘ ( 𝐶s 𝑆 ) ) = ( Base ‘ ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
19 eqid ( 𝐶s 𝑆 ) = ( 𝐶s 𝑆 )
20 19 2 ressbas2 ( 𝑆𝐵𝑆 = ( Base ‘ ( 𝐶s 𝑆 ) ) )
21 5 20 syl ( 𝜑𝑆 = ( Base ‘ ( 𝐶s 𝑆 ) ) )
22 2 fvexi 𝐵 ∈ V
23 22 ssex ( 𝑆𝐵𝑆 ∈ V )
24 5 23 syl ( 𝜑𝑆 ∈ V )
25 1 3 24 4 rescval2 ( 𝜑𝐷 = ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
26 25 fveq2d ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) ) )
27 18 21 26 3eqtr4a ( 𝜑𝑆 = ( Base ‘ 𝐷 ) )