| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescbas.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
| 2 |
|
rescbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
rescbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
rescbas.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 5 |
|
rescbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 6 |
|
rescco.o |
⊢ · = ( comp ‘ 𝐶 ) |
| 7 |
|
ccoid |
⊢ comp = Slot ( comp ‘ ndx ) |
| 8 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
| 9 |
|
simp3 |
⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
| 10 |
9
|
necomd |
⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |
| 11 |
8 10
|
ax-mp |
⊢ ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 12 |
7 11
|
setsnid |
⊢ ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) = ( comp ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 13 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 14 |
13
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
| 17 |
16 6
|
ressco |
⊢ ( 𝑆 ∈ V → · = ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 18 |
15 17
|
syl |
⊢ ( 𝜑 → · = ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 19 |
1 3 15 4
|
rescval2 |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝐷 ) = ( comp ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
| 21 |
12 18 20
|
3eqtr4a |
⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) |