Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
rescbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rescbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
rescbas.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
rescbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
6 |
|
rescco.o |
⊢ · = ( comp ‘ 𝐶 ) |
7 |
|
ccoid |
⊢ comp = Slot ( comp ‘ ndx ) |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
|
4nn |
⊢ 4 ∈ ℕ |
10 |
8 9
|
decnncl |
⊢ ; 1 4 ∈ ℕ |
11 |
10
|
nnrei |
⊢ ; 1 4 ∈ ℝ |
12 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
13 |
|
5nn |
⊢ 5 ∈ ℕ |
14 |
|
4lt5 |
⊢ 4 < 5 |
15 |
8 12 13 14
|
declt |
⊢ ; 1 4 < ; 1 5 |
16 |
11 15
|
gtneii |
⊢ ; 1 5 ≠ ; 1 4 |
17 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
18 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
19 |
17 18
|
neeq12i |
⊢ ( ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ ; 1 5 ≠ ; 1 4 ) |
20 |
16 19
|
mpbir |
⊢ ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) |
21 |
7 20
|
setsnid |
⊢ ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) = ( comp ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
22 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
23 |
22
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
25 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
26 |
25 6
|
ressco |
⊢ ( 𝑆 ∈ V → · = ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → · = ( comp ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
28 |
1 3 24 4
|
rescval2 |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝐷 ) = ( comp ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
30 |
21 27 29
|
3eqtr4a |
⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) |