Metamath Proof Explorer


Theorem rescfth

Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses rescfth.d 𝐷 = ( 𝐶cat 𝐽 )
rescfth.i 𝐼 = ( idfunc𝐷 )
Assertion rescfth ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rescfth.d 𝐷 = ( 𝐶cat 𝐽 )
2 rescfth.i 𝐼 = ( idfunc𝐷 )
3 1 oveq2i ( 𝐷 Faith 𝐷 ) = ( 𝐷 Faith ( 𝐶cat 𝐽 ) )
4 fthres2 ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith ( 𝐶cat 𝐽 ) ) ⊆ ( 𝐷 Faith 𝐶 ) )
5 3 4 eqsstrid ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith 𝐷 ) ⊆ ( 𝐷 Faith 𝐶 ) )
6 id ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) )
7 1 6 subccat ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐷 ∈ Cat )
8 2 idffth ( 𝐷 ∈ Cat → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) )
9 7 8 syl ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) )
10 9 elin2d ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐷 ) )
11 5 10 sseldd ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐶 ) )