| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescfth.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
| 2 |
|
rescfth.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 3 |
1
|
oveq2i |
⊢ ( 𝐷 Faith 𝐷 ) = ( 𝐷 Faith ( 𝐶 ↾cat 𝐽 ) ) |
| 4 |
|
fthres2 |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith ( 𝐶 ↾cat 𝐽 ) ) ⊆ ( 𝐷 Faith 𝐶 ) ) |
| 5 |
3 4
|
eqsstrid |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Faith 𝐷 ) ⊆ ( 𝐷 Faith 𝐶 ) ) |
| 6 |
|
id |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 7 |
1 6
|
subccat |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐷 ∈ Cat ) |
| 8 |
2
|
idffth |
⊢ ( 𝐷 ∈ Cat → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐷 ) ∩ ( 𝐷 Faith 𝐷 ) ) ) |
| 10 |
9
|
elin2d |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐷 ) ) |
| 11 |
5 10
|
sseldd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 ∈ ( 𝐷 Faith 𝐶 ) ) |