Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
rescbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rescbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
rescbas.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
rescbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
6 |
|
ovex |
⊢ ( 𝐶 ↾s 𝑆 ) ∈ V |
7 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
8 |
7
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
10 |
9 9
|
xpexd |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
11 |
|
fnex |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) |
12 |
4 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
13 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
14 |
13
|
setsid |
⊢ ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝐻 ∈ V ) → 𝐻 = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
15 |
6 12 14
|
sylancr |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
16 |
1 3 9 4
|
rescval2 |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
18 |
15 17
|
eqtr4d |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) |