Metamath Proof Explorer


Theorem rescnvcnv

Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion rescnvcnv ( 𝐴𝐵 ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 cnvcnv2 𝐴 = ( 𝐴 ↾ V )
2 1 reseq1i ( 𝐴𝐵 ) = ( ( 𝐴 ↾ V ) ↾ 𝐵 )
3 resres ( ( 𝐴 ↾ V ) ↾ 𝐵 ) = ( 𝐴 ↾ ( V ∩ 𝐵 ) )
4 ssv 𝐵 ⊆ V
5 sseqin2 ( 𝐵 ⊆ V ↔ ( V ∩ 𝐵 ) = 𝐵 )
6 4 5 mpbi ( V ∩ 𝐵 ) = 𝐵
7 6 reseq2i ( 𝐴 ↾ ( V ∩ 𝐵 ) ) = ( 𝐴𝐵 )
8 2 3 7 3eqtri ( 𝐴𝐵 ) = ( 𝐴𝐵 )