Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rescnvcnv | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 | ⊢ ◡ ◡ 𝐴 = ( 𝐴 ↾ V ) | |
2 | 1 | reseq1i | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( ( 𝐴 ↾ V ) ↾ 𝐵 ) |
3 | resres | ⊢ ( ( 𝐴 ↾ V ) ↾ 𝐵 ) = ( 𝐴 ↾ ( V ∩ 𝐵 ) ) | |
4 | ssv | ⊢ 𝐵 ⊆ V | |
5 | sseqin2 | ⊢ ( 𝐵 ⊆ V ↔ ( V ∩ 𝐵 ) = 𝐵 ) | |
6 | 4 5 | mpbi | ⊢ ( V ∩ 𝐵 ) = 𝐵 |
7 | 6 | reseq2i | ⊢ ( 𝐴 ↾ ( V ∩ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) |
8 | 2 3 7 | 3eqtri | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) |