Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) |
2 |
|
relco |
⊢ Rel ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
3 4
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
7 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
8 |
|
vex |
⊢ 𝑧 ∈ V |
9 |
8
|
brresi |
⊢ ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ∧ 𝑧 𝐴 𝑦 ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
12 |
10 11
|
bitr2i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
14 |
6 7 13
|
3bitr2i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
15 |
4
|
brresi |
⊢ ( 𝑥 ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) 𝑦 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ) |
16 |
3 4
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
17 |
14 15 16
|
3bitr4i |
⊢ ( 𝑥 ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) 𝑦 ↔ 𝑥 ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) 𝑦 ) |
18 |
1 2 17
|
eqbrriv |
⊢ ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) |