Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rescom | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐵 ) | |
| 2 | 1 | reseq2i | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) |
| 3 | resres | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) | |
| 4 | resres | ⊢ ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) | |
| 5 | 2 3 4 | 3eqtr4i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) |