Step |
Hyp |
Ref |
Expression |
1 |
|
rescval.1 |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
rescval2.1 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
3 |
|
rescval2.2 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
4 |
|
rescval2.3 |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
3 3
|
xpexd |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
6 |
|
fnex |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) |
7 |
4 5 6
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
8 |
1
|
rescval |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V ) → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
9 |
2 7 8
|
syl2anc |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
10 |
4
|
fndmd |
⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
11 |
10
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) ) |
12 |
|
dmxpid |
⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝜑 → dom dom 𝐻 = 𝑆 ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 ↾s dom dom 𝐻 ) = ( 𝐶 ↾s 𝑆 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
16 |
9 15
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |