Metamath Proof Explorer


Theorem rescval2

Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescval.1 𝐷 = ( 𝐶cat 𝐻 )
rescval2.1 ( 𝜑𝐶𝑉 )
rescval2.2 ( 𝜑𝑆𝑊 )
rescval2.3 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
Assertion rescval2 ( 𝜑𝐷 = ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )

Proof

Step Hyp Ref Expression
1 rescval.1 𝐷 = ( 𝐶cat 𝐻 )
2 rescval2.1 ( 𝜑𝐶𝑉 )
3 rescval2.2 ( 𝜑𝑆𝑊 )
4 rescval2.3 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
5 3 3 xpexd ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V )
6 fnex ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V )
7 4 5 6 syl2anc ( 𝜑𝐻 ∈ V )
8 1 rescval ( ( 𝐶𝑉𝐻 ∈ V ) → 𝐷 = ( ( 𝐶s dom dom 𝐻 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
9 2 7 8 syl2anc ( 𝜑𝐷 = ( ( 𝐶s dom dom 𝐻 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
10 4 fndmd ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) )
11 10 dmeqd ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) )
12 dmxpid dom ( 𝑆 × 𝑆 ) = 𝑆
13 11 12 eqtrdi ( 𝜑 → dom dom 𝐻 = 𝑆 )
14 13 oveq2d ( 𝜑 → ( 𝐶s dom dom 𝐻 ) = ( 𝐶s 𝑆 ) )
15 14 oveq1d ( 𝜑 → ( ( 𝐶s dom dom 𝐻 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) = ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
16 9 15 eqtrd ( 𝜑𝐷 = ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )