| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescval.1 | ⊢ 𝐷  =  ( 𝐶  ↾cat  𝐻 ) | 
						
							| 2 |  | rescval2.1 | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 3 |  | rescval2.2 | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 4 |  | rescval2.3 | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝑆  ×  𝑆 ) ) | 
						
							| 5 | 3 3 | xpexd | ⊢ ( 𝜑  →  ( 𝑆  ×  𝑆 )  ∈  V ) | 
						
							| 6 |  | fnex | ⊢ ( ( 𝐻  Fn  ( 𝑆  ×  𝑆 )  ∧  ( 𝑆  ×  𝑆 )  ∈  V )  →  𝐻  ∈  V ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 8 | 1 | rescval | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝐻  ∈  V )  →  𝐷  =  ( ( 𝐶  ↾s  dom  dom  𝐻 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 9 | 2 7 8 | syl2anc | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐶  ↾s  dom  dom  𝐻 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 10 | 4 | fndmd | ⊢ ( 𝜑  →  dom  𝐻  =  ( 𝑆  ×  𝑆 ) ) | 
						
							| 11 | 10 | dmeqd | ⊢ ( 𝜑  →  dom  dom  𝐻  =  dom  ( 𝑆  ×  𝑆 ) ) | 
						
							| 12 |  | dmxpid | ⊢ dom  ( 𝑆  ×  𝑆 )  =  𝑆 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝜑  →  dom  dom  𝐻  =  𝑆 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶  ↾s  dom  dom  𝐻 )  =  ( 𝐶  ↾s  𝑆 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐶  ↾s  dom  dom  𝐻 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) | 
						
							| 16 | 9 15 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐶  ↾s  𝑆 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) |