Metamath Proof Explorer


Theorem resdif

Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion resdif ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 fofun ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → Fun ( 𝐹𝐴 ) )
2 difss ( 𝐴𝐵 ) ⊆ 𝐴
3 fof ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ( 𝐹𝐴 ) : 𝐴𝐶 )
4 3 fdmd ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → dom ( 𝐹𝐴 ) = 𝐴 )
5 2 4 sseqtrrid ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ( 𝐴𝐵 ) ⊆ dom ( 𝐹𝐴 ) )
6 fores ( ( Fun ( 𝐹𝐴 ) ∧ ( 𝐴𝐵 ) ⊆ dom ( 𝐹𝐴 ) ) → ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) )
7 1 5 6 syl2anc ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) )
8 resres ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴𝐵 ) ) )
9 indif ( 𝐴 ∩ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
10 9 reseq2i ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴𝐵 ) ) ) = ( 𝐹 ↾ ( 𝐴𝐵 ) )
11 8 10 eqtri ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐴𝐵 ) )
12 foeq1 ( ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐴𝐵 ) ) → ( ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ) )
13 11 12 ax-mp ( ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) )
14 11 rneqi ran ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴𝐵 ) )
15 df-ima ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) = ran ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) )
16 df-ima ( 𝐹 “ ( 𝐴𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴𝐵 ) )
17 14 15 16 3eqtr4i ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) = ( 𝐹 “ ( 𝐴𝐵 ) )
18 foeq3 ( ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) = ( 𝐹 “ ( 𝐴𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) ) )
19 17 18 ax-mp ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
20 13 19 bitri ( ( ( 𝐹𝐴 ) ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( ( 𝐹𝐴 ) “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
21 7 20 sylib ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
22 funres11 ( Fun 𝐹 → Fun ( 𝐹 ↾ ( 𝐴𝐵 ) ) )
23 dff1o3 ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) ↔ ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) ∧ Fun ( 𝐹 ↾ ( 𝐴𝐵 ) ) ) )
24 23 biimpri ( ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) ∧ Fun ( 𝐹 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
25 21 22 24 syl2anr ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
26 25 3adant3 ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) )
27 df-ima ( 𝐹𝐴 ) = ran ( 𝐹𝐴 )
28 forn ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ran ( 𝐹𝐴 ) = 𝐶 )
29 27 28 syl5eq ( ( 𝐹𝐴 ) : 𝐴onto𝐶 → ( 𝐹𝐴 ) = 𝐶 )
30 df-ima ( 𝐹𝐵 ) = ran ( 𝐹𝐵 )
31 forn ( ( 𝐹𝐵 ) : 𝐵onto𝐷 → ran ( 𝐹𝐵 ) = 𝐷 )
32 30 31 syl5eq ( ( 𝐹𝐵 ) : 𝐵onto𝐷 → ( 𝐹𝐵 ) = 𝐷 )
33 29 32 anim12i ( ( ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( ( 𝐹𝐴 ) = 𝐶 ∧ ( 𝐹𝐵 ) = 𝐷 ) )
34 imadif ( Fun 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∖ ( 𝐹𝐵 ) ) )
35 difeq12 ( ( ( 𝐹𝐴 ) = 𝐶 ∧ ( 𝐹𝐵 ) = 𝐷 ) → ( ( 𝐹𝐴 ) ∖ ( 𝐹𝐵 ) ) = ( 𝐶𝐷 ) )
36 34 35 sylan9eq ( ( Fun 𝐹 ∧ ( ( 𝐹𝐴 ) = 𝐶 ∧ ( 𝐹𝐵 ) = 𝐷 ) ) → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( 𝐶𝐷 ) )
37 33 36 sylan2 ( ( Fun 𝐹 ∧ ( ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) ) → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( 𝐶𝐷 ) )
38 37 3impb ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( 𝐶𝐷 ) )
39 38 f1oeq3d ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) ) )
40 26 39 mpbid ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )