Step |
Hyp |
Ref |
Expression |
1 |
|
fofun |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → Fun ( 𝐹 ↾ 𝐴 ) ) |
2 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
3 |
|
fof |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) |
4 |
3
|
fdmd |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
5 |
2 4
|
sseqtrrid |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐴 ∖ 𝐵 ) ⊆ dom ( 𝐹 ↾ 𝐴 ) ) |
6 |
|
fores |
⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ ( 𝐴 ∖ 𝐵 ) ⊆ dom ( 𝐹 ↾ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) |
7 |
1 5 6
|
syl2anc |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) |
8 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) ) |
9 |
|
indif |
⊢ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
10 |
9
|
reseq2i |
⊢ ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
11 |
8 10
|
eqtri |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
12 |
|
foeq1 |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) |
14 |
11
|
rneqi |
⊢ ran ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
15 |
|
df-ima |
⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ran ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) |
16 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
17 |
14 15 16
|
3eqtr4i |
⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) |
18 |
|
foeq3 |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
20 |
13 19
|
bitri |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
21 |
7 20
|
sylib |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
22 |
|
funres11 |
⊢ ( Fun ◡ 𝐹 → Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
23 |
|
dff1o3 |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ∧ Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ) |
24 |
23
|
biimpri |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ∧ Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
25 |
21 22 24
|
syl2anr |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
26 |
25
|
3adant3 |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
27 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
28 |
|
forn |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ran ( 𝐹 ↾ 𝐴 ) = 𝐶 ) |
29 |
27 28
|
eqtrid |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 “ 𝐴 ) = 𝐶 ) |
30 |
|
df-ima |
⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
31 |
|
forn |
⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 → ran ( 𝐹 ↾ 𝐵 ) = 𝐷 ) |
32 |
30 31
|
eqtrid |
⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 → ( 𝐹 “ 𝐵 ) = 𝐷 ) |
33 |
29 32
|
anim12i |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) ) |
34 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) |
35 |
|
difeq12 |
⊢ ( ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) → ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
36 |
34 35
|
sylan9eq |
⊢ ( ( Fun ◡ 𝐹 ∧ ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
37 |
33 36
|
sylan2 |
⊢ ( ( Fun ◡ 𝐹 ∧ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
38 |
37
|
3impb |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
39 |
38
|
f1oeq3d |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐶 ∖ 𝐷 ) ) ) |
40 |
26 39
|
mpbid |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐶 ∖ 𝐷 ) ) |