Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdifcom | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ↾ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif1 | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( 𝐵 × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∖ 𝐶 ) | |
| 2 | df-res | ⊢ ( ( 𝐴 ∖ 𝐶 ) ↾ 𝐵 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( 𝐵 × V ) ) | |
| 3 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 4 | 3 | difeq1i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∖ 𝐶 ) |
| 5 | 1 2 4 | 3eqtr4ri | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ↾ 𝐵 ) |