Metamath Proof Explorer


Theorem resdifcom

Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021)

Ref Expression
Assertion resdifcom ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐴𝐶 ) ↾ 𝐵 )

Proof

Step Hyp Ref Expression
1 indif1 ( ( 𝐴𝐶 ) ∩ ( 𝐵 × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∖ 𝐶 )
2 df-res ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵 × V ) )
3 df-res ( 𝐴𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
4 3 difeq1i ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∖ 𝐶 )
5 1 2 4 3eqtr4ri ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐴𝐶 ) ↾ 𝐵 )