| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( 𝐴  ↾  ( 𝐵  ∖  𝐶 ) )  =  ( 𝐴  ∩  ( ( 𝐵  ∖  𝐶 )  ×  V ) ) | 
						
							| 2 |  | difxp1 | ⊢ ( ( 𝐵  ∖  𝐶 )  ×  V )  =  ( ( 𝐵  ×  V )  ∖  ( 𝐶  ×  V ) ) | 
						
							| 3 | 2 | ineq2i | ⊢ ( 𝐴  ∩  ( ( 𝐵  ∖  𝐶 )  ×  V ) )  =  ( 𝐴  ∩  ( ( 𝐵  ×  V )  ∖  ( 𝐶  ×  V ) ) ) | 
						
							| 4 |  | indifdi | ⊢ ( 𝐴  ∩  ( ( 𝐵  ×  V )  ∖  ( 𝐶  ×  V ) ) )  =  ( ( 𝐴  ∩  ( 𝐵  ×  V ) )  ∖  ( 𝐴  ∩  ( 𝐶  ×  V ) ) ) | 
						
							| 5 | 1 3 4 | 3eqtri | ⊢ ( 𝐴  ↾  ( 𝐵  ∖  𝐶 ) )  =  ( ( 𝐴  ∩  ( 𝐵  ×  V ) )  ∖  ( 𝐴  ∩  ( 𝐶  ×  V ) ) ) | 
						
							| 6 |  | df-res | ⊢ ( 𝐴  ↾  𝐵 )  =  ( 𝐴  ∩  ( 𝐵  ×  V ) ) | 
						
							| 7 |  | df-res | ⊢ ( 𝐴  ↾  𝐶 )  =  ( 𝐴  ∩  ( 𝐶  ×  V ) ) | 
						
							| 8 | 6 7 | difeq12i | ⊢ ( ( 𝐴  ↾  𝐵 )  ∖  ( 𝐴  ↾  𝐶 ) )  =  ( ( 𝐴  ∩  ( 𝐵  ×  V ) )  ∖  ( 𝐴  ∩  ( 𝐶  ×  V ) ) ) | 
						
							| 9 | 5 8 | eqtr4i | ⊢ ( 𝐴  ↾  ( 𝐵  ∖  𝐶 ) )  =  ( ( 𝐴  ↾  𝐵 )  ∖  ( 𝐴  ↾  𝐶 ) ) |