Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | resdm | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴 ) → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) | |
3 | 1 2 | mpan2 | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) |