Metamath Proof Explorer


Theorem resdm2

Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdm2 ( 𝐴 ↾ dom 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 rescnvcnv ( 𝐴 ↾ dom 𝐴 ) = ( 𝐴 ↾ dom 𝐴 )
2 relcnv Rel 𝐴
3 resdm ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 )
4 2 3 ax-mp ( 𝐴 ↾ dom 𝐴 ) = 𝐴
5 dmcnvcnv dom 𝐴 = dom 𝐴
6 5 reseq2i ( 𝐴 ↾ dom 𝐴 ) = ( 𝐴 ↾ dom 𝐴 )
7 1 4 6 3eqtr3ri ( 𝐴 ↾ dom 𝐴 ) = 𝐴