Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | resdm2 | ⊢ ( 𝐴 ↾ dom 𝐴 ) = ◡ ◡ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv | ⊢ ( ◡ ◡ 𝐴 ↾ dom ◡ ◡ 𝐴 ) = ( 𝐴 ↾ dom ◡ ◡ 𝐴 ) | |
2 | relcnv | ⊢ Rel ◡ ◡ 𝐴 | |
3 | resdm | ⊢ ( Rel ◡ ◡ 𝐴 → ( ◡ ◡ 𝐴 ↾ dom ◡ ◡ 𝐴 ) = ◡ ◡ 𝐴 ) | |
4 | 2 3 | ax-mp | ⊢ ( ◡ ◡ 𝐴 ↾ dom ◡ ◡ 𝐴 ) = ◡ ◡ 𝐴 |
5 | dmcnvcnv | ⊢ dom ◡ ◡ 𝐴 = dom 𝐴 | |
6 | 5 | reseq2i | ⊢ ( 𝐴 ↾ dom ◡ ◡ 𝐴 ) = ( 𝐴 ↾ dom 𝐴 ) |
7 | 1 4 6 | 3eqtr3ri | ⊢ ( 𝐴 ↾ dom 𝐴 ) = ◡ ◡ 𝐴 |