| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resindm | ⊢ ( Rel  𝑅  →  ( 𝑅  ↾  ( ( V  ∖  { 𝑋 } )  ∩  dom  𝑅 ) )  =  ( 𝑅  ↾  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 2 |  | indif1 | ⊢ ( ( V  ∖  { 𝑋 } )  ∩  dom  𝑅 )  =  ( ( V  ∩  dom  𝑅 )  ∖  { 𝑋 } ) | 
						
							| 3 |  | incom | ⊢ ( V  ∩  dom  𝑅 )  =  ( dom  𝑅  ∩  V ) | 
						
							| 4 |  | inv1 | ⊢ ( dom  𝑅  ∩  V )  =  dom  𝑅 | 
						
							| 5 | 3 4 | eqtri | ⊢ ( V  ∩  dom  𝑅 )  =  dom  𝑅 | 
						
							| 6 | 5 | difeq1i | ⊢ ( ( V  ∩  dom  𝑅 )  ∖  { 𝑋 } )  =  ( dom  𝑅  ∖  { 𝑋 } ) | 
						
							| 7 | 2 6 | eqtri | ⊢ ( ( V  ∖  { 𝑋 } )  ∩  dom  𝑅 )  =  ( dom  𝑅  ∖  { 𝑋 } ) | 
						
							| 8 | 7 | reseq2i | ⊢ ( 𝑅  ↾  ( ( V  ∖  { 𝑋 } )  ∩  dom  𝑅 ) )  =  ( 𝑅  ↾  ( dom  𝑅  ∖  { 𝑋 } ) ) | 
						
							| 9 | 1 8 | eqtr3di | ⊢ ( Rel  𝑅  →  ( 𝑅  ↾  ( V  ∖  { 𝑋 } ) )  =  ( 𝑅  ↾  ( dom  𝑅  ∖  { 𝑋 } ) ) ) |