| Step |
Hyp |
Ref |
Expression |
| 1 |
|
in12 |
⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) ) |
| 2 |
|
df-res |
⊢ ( 𝐴 ↾ dom 𝐴 ) = ( 𝐴 ∩ ( dom 𝐴 × V ) ) |
| 3 |
|
resdm2 |
⊢ ( 𝐴 ↾ dom 𝐴 ) = ◡ ◡ 𝐴 |
| 4 |
2 3
|
eqtr3i |
⊢ ( 𝐴 ∩ ( dom 𝐴 × V ) ) = ◡ ◡ 𝐴 |
| 5 |
4
|
ineq2i |
⊢ ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ ◡ ◡ 𝐴 ) |
| 6 |
|
incom |
⊢ ( ( 𝐵 × V ) ∩ ◡ ◡ 𝐴 ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) |
| 7 |
1 5 6
|
3eqtri |
⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) |
| 8 |
|
df-res |
⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ∩ ( dom ( 𝐴 ↾ 𝐵 ) × V ) ) |
| 9 |
|
dmres |
⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) |
| 10 |
9
|
xpeq1i |
⊢ ( dom ( 𝐴 ↾ 𝐵 ) × V ) = ( ( 𝐵 ∩ dom 𝐴 ) × V ) |
| 11 |
|
xpindir |
⊢ ( ( 𝐵 ∩ dom 𝐴 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) |
| 12 |
10 11
|
eqtri |
⊢ ( dom ( 𝐴 ↾ 𝐵 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) |
| 13 |
12
|
ineq2i |
⊢ ( 𝐴 ∩ ( dom ( 𝐴 ↾ 𝐵 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) |
| 14 |
8 13
|
eqtri |
⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) |
| 15 |
|
df-res |
⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) |
| 16 |
7 14 15
|
3eqtr4i |
⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( ◡ ◡ 𝐴 ↾ 𝐵 ) |
| 17 |
|
rescnvcnv |
⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) |
| 18 |
16 17
|
eqtri |
⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) |