| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝐶  ⊆  𝐴 ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  𝑋  ∈  𝐴 ) | 
						
							| 4 | 3 | snssd | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  { 𝑋 }  ⊆  𝐴 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  { 𝑋 }  ⊆  𝐴 ) | 
						
							| 6 | 2 5 | unssd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐶  ∪  { 𝑋 } )  ⊆  𝐴 ) | 
						
							| 7 | 1 6 | fssresd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 ) | 
						
							| 9 |  | elun | ⊢ ( 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } )  ↔  ( 𝑦  ∈  𝐶  ∨  𝑦  ∈  { 𝑋 } ) ) | 
						
							| 10 |  | elun | ⊢ ( 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } )  ↔  ( 𝑧  ∈  𝐶  ∨  𝑧  ∈  { 𝑋 } ) ) | 
						
							| 11 | 9 10 | anbi12i | ⊢ ( ( 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } )  ∧  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) )  ↔  ( ( 𝑦  ∈  𝐶  ∨  𝑦  ∈  { 𝑋 } )  ∧  ( 𝑧  ∈  𝐶  ∨  𝑧  ∈  { 𝑋 } ) ) ) | 
						
							| 12 |  | dff14a | ⊢ ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ↔  ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵  ∧  ∀ 𝑤  ∈  𝐶 ∀ 𝑥  ∈  𝐶 ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) ) ) ) | 
						
							| 13 |  | neeq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ≠  𝑥  ↔  𝑦  ≠  𝑥 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  =  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 ) ) | 
						
							| 15 | 14 | neeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ↔  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) ) ) | 
						
							| 16 | 13 15 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) )  ↔  ( 𝑦  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | neeq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ≠  𝑥  ↔  𝑦  ≠  𝑧 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  =  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) ) | 
						
							| 19 | 18 | neeq2d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ↔  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) ) ) | 
						
							| 20 | 17 19 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑦  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) )  ↔  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 21 | 16 20 | rspc2v | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ∀ 𝑤  ∈  𝐶 ∀ 𝑥  ∈  𝐶 ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) ) ) ) | 
						
							| 22 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  𝑦  ∈  𝐶 ) | 
						
							| 23 | 22 | fvresd | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  𝑧  ∈  𝐶 ) | 
						
							| 25 | 24 | fvresd | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 26 | 23 25 | neeq12d | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) )  ↔  ( 𝑦  ≠  𝑧  →  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 28 | 27 | bi23imp13 | ⊢ ( ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  ∧  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) )  ∧  𝑦  ≠  𝑧 )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 29 |  | elun1 | ⊢ ( 𝑦  ∈  𝐶  →  𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 31 | 30 | fvresd | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 32 |  | elun1 | ⊢ ( 𝑧  ∈  𝐶  →  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 34 | 33 | fvresd | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 35 | 31 34 | neeq12d | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  ∧  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) )  ∧  𝑦  ≠  𝑧 )  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 37 | 28 36 | mpbird | ⊢ ( ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  ∧  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) )  ∧  𝑦  ≠  𝑧 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) | 
						
							| 38 | 37 | 3exp | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑧 ) )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 39 | 21 38 | syldc | ⊢ ( ∀ 𝑤  ∈  𝐶 ∀ 𝑥  ∈  𝐶 ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵  ∧  ∀ 𝑤  ∈  𝐶 ∀ 𝑥  ∈  𝐶 ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵  ∧  ∀ 𝑤  ∈  𝐶 ∀ 𝑥  ∈  𝐶 ( 𝑤  ≠  𝑥  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑤 )  ≠  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 ) ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 42 | 12 41 | biimtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 43 | 42 | a1dd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 44 | 43 | imp32 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 45 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 46 | 45 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 47 | 46 2 | fvelimabd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐶 )  ↔  ∃ 𝑥  ∈  𝐶 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 48 | 47 | notbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ¬  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐶 )  ↔  ¬  ∃ 𝑥  ∈  𝐶 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 49 |  | df-nel | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  ↔  ¬  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐹  “  𝐶 ) ) | 
						
							| 50 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ¬  ∃ 𝑥  ∈  𝐶 ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 51 | 48 49 50 | 3bitr4g | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  ↔  ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 52 |  | df-ne | ⊢ ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 54 | 53 | neeq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 55 | 52 54 | bitr3id | ⊢ ( 𝑥  =  𝑧  →  ( ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 56 | 55 | rspcv | ⊢ ( 𝑧  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 57 | 56 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 58 | 32 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 59 | 58 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 60 | 59 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) | 
						
							| 61 |  | elsni | ⊢ ( 𝑦  ∈  { 𝑋 }  →  𝑦  =  𝑋 ) | 
						
							| 62 | 61 | eqcomd | ⊢ ( 𝑦  ∈  { 𝑋 }  →  𝑋  =  𝑦 ) | 
						
							| 63 | 62 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  𝑋  =  𝑦 ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 65 |  | elun2 | ⊢ ( 𝑦  ∈  { 𝑋 }  →  𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 66 | 65 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 67 | 66 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 68 | 64 67 | eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 ) ) | 
						
							| 69 | 60 68 | neeq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 ) ) ) | 
						
							| 70 | 69 | biimpa | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  ∧  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 ) ) | 
						
							| 71 | 70 | necomd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  ∧  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) | 
						
							| 72 | 71 | a1d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  ∧  ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 ) )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ≠  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 74 | 57 73 | syld | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 75 | 74 | a1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 77 | 76 | com24 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 78 | 51 77 | sylbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 79 | 78 | impcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) )  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 80 | 79 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 81 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 82 | 81 | neeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 83 | 52 82 | bitr3id | ⊢ ( 𝑥  =  𝑦  →  ( ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 84 | 83 | rspcv | ⊢ ( 𝑦  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 85 | 84 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 86 | 29 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 87 | 86 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 88 | 87 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 ) ) | 
						
							| 89 |  | elsni | ⊢ ( 𝑧  ∈  { 𝑋 }  →  𝑧  =  𝑋 ) | 
						
							| 90 | 89 | eqcomd | ⊢ ( 𝑧  ∈  { 𝑋 }  →  𝑋  =  𝑧 ) | 
						
							| 91 | 90 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  𝑋  =  𝑧 ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 93 |  | elun2 | ⊢ ( 𝑧  ∈  { 𝑋 }  →  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 94 | 93 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 95 | 94 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 96 | 92 95 | eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) | 
						
							| 97 | 88 96 | neeq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 )  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 98 | 97 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 99 | 98 | a1dd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 100 | 85 99 | syld | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 101 | 100 | a1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } ) )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 103 | 102 | com24 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 104 | 51 103 | sylbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 105 | 104 | impcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 106 | 105 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 107 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑋 }  ↔  𝑦  =  𝑋 ) | 
						
							| 108 |  | velsn | ⊢ ( 𝑧  ∈  { 𝑋 }  ↔  𝑧  =  𝑋 ) | 
						
							| 109 |  | eqtr3 | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝑋 )  →  𝑦  =  𝑧 ) | 
						
							| 110 |  | eqneqall | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑧  =  𝑋 )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 112 | 107 108 111 | syl2anb | ⊢ ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 113 | 112 | a1i | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( 𝑦  ∈  { 𝑋 }  ∧  𝑧  ∈  { 𝑋 } )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 114 | 44 80 106 113 | ccased | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( ( 𝑦  ∈  𝐶  ∨  𝑦  ∈  { 𝑋 } )  ∧  ( 𝑧  ∈  𝐶  ∨  𝑧  ∈  { 𝑋 } ) )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 115 | 11 114 | biimtrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( ( 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } )  ∧  𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) )  →  ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 116 | 115 | ralrimivv | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 117 |  | dff14a | ⊢ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵  ∧  ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 118 | 8 116 117 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) )  →  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 ) | 
						
							| 119 |  | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵 ) | 
						
							| 120 | 119 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵 ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵 ) | 
						
							| 122 |  | df-f1 | ⊢ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵  ∧  Fun  ◡ ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ) ) | 
						
							| 123 |  | funres11 | ⊢ ( Fun  ◡ ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  →  Fun  ◡ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) ) | 
						
							| 124 | 122 123 | simplbiim | ⊢ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵  →  Fun  ◡ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  Fun  ◡ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) ) | 
						
							| 126 |  | ssun1 | ⊢ 𝐶  ⊆  ( 𝐶  ∪  { 𝑋 } ) | 
						
							| 127 | 126 | resabs1i | ⊢ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 )  =  ( 𝐹  ↾  𝐶 ) | 
						
							| 128 | 127 | eqcomi | ⊢ ( 𝐹  ↾  𝐶 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) | 
						
							| 129 | 128 | cnveqi | ⊢ ◡ ( 𝐹  ↾  𝐶 )  =  ◡ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) | 
						
							| 130 | 129 | funeqi | ⊢ ( Fun  ◡ ( 𝐹  ↾  𝐶 )  ↔  Fun  ◡ ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) )  ↾  𝐶 ) ) | 
						
							| 131 | 125 130 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  Fun  ◡ ( 𝐹  ↾  𝐶 ) ) | 
						
							| 132 |  | df-f1 | ⊢ ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ↔  ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐵  ∧  Fun  ◡ ( 𝐹  ↾  𝐶 ) ) ) | 
						
							| 133 | 121 131 132 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵 ) | 
						
							| 134 |  | elun1 | ⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 135 |  | snidg | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 136 | 135 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 137 |  | elun2 | ⊢ ( 𝑋  ∈  { 𝑋 }  →  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 139 |  | neeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ≠  𝑧  ↔  𝑥  ≠  𝑧 ) ) | 
						
							| 140 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 ) ) | 
						
							| 141 | 140 | neeq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) | 
						
							| 142 | 139 141 | imbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  ↔  ( 𝑥  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 143 |  | neeq2 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑥  ≠  𝑧  ↔  𝑥  ≠  𝑋 ) ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  =  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) | 
						
							| 145 | 144 | neeq2d | ⊢ ( 𝑧  =  𝑋  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 )  ↔  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) | 
						
							| 146 | 143 145 | imbi12d | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝑥  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  ↔  ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) | 
						
							| 147 | 142 146 | rspc2v | ⊢ ( ( 𝑥  ∈  ( 𝐶  ∪  { 𝑋 } )  ∧  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) )  →  ( ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  →  ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) | 
						
							| 148 | 134 138 147 | syl2anr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  ( ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  →  ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  →  ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) | 
						
							| 150 |  | eldifn | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  ¬  𝑋  ∈  𝐶 ) | 
						
							| 151 |  | nelelne | ⊢ ( ¬  𝑋  ∈  𝐶  →  ( 𝑥  ∈  𝐶  →  𝑥  ≠  𝑋 ) ) | 
						
							| 152 | 150 151 | syl | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  ( 𝑥  ∈  𝐶  →  𝑥  ≠  𝑋 ) ) | 
						
							| 153 | 152 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( 𝑥  ∈  𝐶  →  𝑥  ≠  𝑋 ) ) | 
						
							| 154 | 153 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  𝑥  ≠  𝑋 ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  𝑥  ≠  𝑋 ) | 
						
							| 156 |  | pm2.27 | ⊢ ( 𝑥  ≠  𝑋  →  ( ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) | 
						
							| 157 | 155 156 | syl | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) ) ) | 
						
							| 158 | 134 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  𝑥  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 160 | 159 | fvresd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 161 | 135 137 | syl | ⊢ ( 𝑋  ∈  ( 𝐴  ∖  𝐶 )  →  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 162 | 161 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  𝑋  ∈  ( 𝐶  ∪  { 𝑋 } ) ) | 
						
							| 164 | 163 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 166 | 160 165 | neeq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 167 | 157 166 | sylibd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ( 𝑥  ≠  𝑋  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑥 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑋 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 168 | 149 167 | syld | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵 )  →  ( ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 169 | 168 | expimpd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  ( ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) ⟶ 𝐵  ∧  ∀ 𝑦  ∈  ( 𝐶  ∪  { 𝑋 } ) ∀ 𝑧  ∈  ( 𝐶  ∪  { 𝑋 } ) ( 𝑦  ≠  𝑧  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑦 )  ≠  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) ‘ 𝑧 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 170 | 117 169 | biimtrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 171 | 170 | impancom | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( 𝑥  ∈  𝐶  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 172 | 171 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 173 | 172 | neneqd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 174 | 173 | ralrimiva | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 175 | 51 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 )  ↔  ∀ 𝑥  ∈  𝐶 ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 176 | 174 175 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) | 
						
							| 177 | 133 176 | jca | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  ∧  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 )  →  ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) ) ) | 
						
							| 178 | 118 177 | impbida | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑋  ∈  ( 𝐴  ∖  𝐶 )  ∧  𝐶  ⊆  𝐴 )  →  ( ( ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1→ 𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∉  ( 𝐹  “  𝐶 ) )  ↔  ( 𝐹  ↾  ( 𝐶  ∪  { 𝑋 } ) ) : ( 𝐶  ∪  { 𝑋 } ) –1-1→ 𝐵 ) ) |