| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrel | ⊢ ( 𝐹  Fn  𝐴  →  Rel  𝐹 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  Fin )  →  Rel  𝐹 ) | 
						
							| 3 |  | resindm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  𝐵 )  =  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  Fin )  →  ( 𝐹  ↾  𝐵 )  =  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 6 |  | fnfun | ⊢ ( 𝐹  Fn  𝐴  →  Fun  𝐹 ) | 
						
							| 7 | 6 | funfnd | ⊢ ( 𝐹  Fn  𝐴  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 8 |  | fnresin2 | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  Fn  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 9 |  | infi | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐵  ∩  dom  𝐹 )  ∈  Fin ) | 
						
							| 10 |  | fnfi | ⊢ ( ( ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  Fn  ( 𝐵  ∩  dom  𝐹 )  ∧  ( 𝐵  ∩  dom  𝐹 )  ∈  Fin )  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  ∈  Fin ) | 
						
							| 11 | 9 10 | sylan2 | ⊢ ( ( ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  Fn  ( 𝐵  ∩  dom  𝐹 )  ∧  𝐵  ∈  Fin )  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  ∈  Fin ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  Fn  ( 𝐵  ∩  dom  𝐹 )  →  ( 𝐵  ∈  Fin  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  ∈  Fin ) ) | 
						
							| 13 | 7 8 12 | 3syl | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐵  ∈  Fin  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  ∈  Fin ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  Fin )  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  ∈  Fin ) | 
						
							| 15 | 5 14 | eqeltrd | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  Fin )  →  ( 𝐹  ↾  𝐵 )  ∈  Fin ) |