Step |
Hyp |
Ref |
Expression |
1 |
|
fnrel |
⊢ ( 𝐹 Fn 𝐴 → Rel 𝐹 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → Rel 𝐹 ) |
3 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
4 |
3
|
eqcomd |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
6 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
7 |
6
|
funfnd |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹 ) |
8 |
|
fnresin2 |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ) |
9 |
|
infi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∩ dom 𝐹 ) ∈ Fin ) |
10 |
|
fnfi |
⊢ ( ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐵 ∩ dom 𝐹 ) ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) |
11 |
9 10
|
sylan2 |
⊢ ( ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) |
12 |
11
|
ex |
⊢ ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) → ( 𝐵 ∈ Fin → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) ) |
13 |
7 8 12
|
3syl |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ Fin → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) |
15 |
5 14
|
eqeltrd |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ 𝐵 ) ∈ Fin ) |