Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐵 ) ) |
2 |
1
|
adantr |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → Fun ( 𝐴 ↾ 𝐵 ) ) |
3 |
2
|
funfnd |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ) |
4 |
|
dffn5 |
⊢ ( ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ↔ ( 𝐴 ↾ 𝐵 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) ) |
5 |
3 4
|
sylib |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) ) |
6 |
|
fvex |
⊢ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ V |
7 |
6
|
fnasrn |
⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
8 |
5 7
|
eqtrdi |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) |
9 |
|
opex |
⊢ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ∈ V |
10 |
|
eqid |
⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
11 |
9 10
|
dmmpti |
⊢ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) = dom ( 𝐴 ↾ 𝐵 ) |
12 |
11
|
imaeq2i |
⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) |
13 |
|
imadmrn |
⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
14 |
12 13
|
eqtr3i |
⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
15 |
8 14
|
eqtr4di |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ) |
16 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
17 |
|
dmresexg |
⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
18 |
17
|
adantl |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
19 |
|
funimaexg |
⊢ ( ( Fun ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ∧ dom ( 𝐴 ↾ 𝐵 ) ∈ V ) → ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ∈ V ) |
20 |
16 18 19
|
sylancr |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ∈ V ) |
21 |
15 20
|
eqeltrd |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |