Metamath Proof Explorer


Theorem resfval

Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resfval.c ( 𝜑𝐹𝑉 )
resfval.d ( 𝜑𝐻𝑊 )
Assertion resfval ( 𝜑 → ( 𝐹f 𝐻 ) = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 resfval.c ( 𝜑𝐹𝑉 )
2 resfval.d ( 𝜑𝐻𝑊 )
3 df-resf f = ( 𝑓 ∈ V , ∈ V ↦ ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ )
4 3 a1i ( 𝜑 → ↾f = ( 𝑓 ∈ V , ∈ V ↦ ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ ) )
5 simprl ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → 𝑓 = 𝐹 )
6 5 fveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( 1st𝑓 ) = ( 1st𝐹 ) )
7 simprr ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → = 𝐻 )
8 7 dmeqd ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → dom = dom 𝐻 )
9 8 dmeqd ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → dom dom = dom dom 𝐻 )
10 6 9 reseq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( ( 1st𝑓 ) ↾ dom dom ) = ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) )
11 5 fveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( 2nd𝑓 ) = ( 2nd𝐹 ) )
12 11 fveq1d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( ( 2nd𝑓 ) ‘ 𝑥 ) = ( ( 2nd𝐹 ) ‘ 𝑥 ) )
13 7 fveq1d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( 𝑥 ) = ( 𝐻𝑥 ) )
14 12 13 reseq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) = ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) )
15 8 14 mpteq12dv ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) = ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) )
16 10 15 opeq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹 = 𝐻 ) ) → ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) ⟩ )
17 1 elexd ( 𝜑𝐹 ∈ V )
18 2 elexd ( 𝜑𝐻 ∈ V )
19 opex ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) ⟩ ∈ V
20 19 a1i ( 𝜑 → ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) ⟩ ∈ V )
21 4 16 17 18 20 ovmpod ( 𝜑 → ( 𝐹f 𝐻 ) = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑥 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑥 ) ↾ ( 𝐻𝑥 ) ) ) ⟩ )