| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resfval.c | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							resfval.d | 
							⊢ ( 𝜑  →  𝐻  ∈  𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							resfval2.g | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑋 )  | 
						
						
							| 4 | 
							
								
							 | 
							resfval2.d | 
							⊢ ( 𝜑  →  𝐻  Fn  ( 𝑆  ×  𝑆 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							opex | 
							⊢ 〈 𝐹 ,  𝐺 〉  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  V )  | 
						
						
							| 7 | 
							
								6 2
							 | 
							resfval | 
							⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉  ↾f  𝐻 )  =  〈 ( ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉 )  | 
						
						
							| 8 | 
							
								
							 | 
							op1stg | 
							⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑋 )  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 )  | 
						
						
							| 9 | 
							
								1 3 8
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 )  | 
						
						
							| 10 | 
							
								4
							 | 
							fndmd | 
							⊢ ( 𝜑  →  dom  𝐻  =  ( 𝑆  ×  𝑆 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							dmeqd | 
							⊢ ( 𝜑  →  dom  dom  𝐻  =  dom  ( 𝑆  ×  𝑆 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							dmxpid | 
							⊢ dom  ( 𝑆  ×  𝑆 )  =  𝑆  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  dom  dom  𝐻  =  𝑆 )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							reseq12d | 
							⊢ ( 𝜑  →  ( ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  ↾  dom  dom  𝐻 )  =  ( 𝐹  ↾  𝑆 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							op2ndg | 
							⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑋 )  →  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐺 )  | 
						
						
							| 16 | 
							
								1 3 15
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐺 )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq1d | 
							⊢ ( 𝜑  →  ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							reseq1d | 
							⊢ ( 𝜑  →  ( ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) )  =  ( ( 𝐺 ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							mpteq12dv | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ( 𝑆  ×  𝑆 )  ↦  ( ( 𝐺 ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 〈 𝑥 ,  𝑦 〉 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑥 𝐺 𝑦 )  =  ( 𝐺 ‘ 〈 𝑥 ,  𝑦 〉 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqtr4di | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝑥 𝐺 𝑦 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑥 𝐻 𝑦 )  =  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqtr4di | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝑥 𝐻 𝑦 ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							reseq12d | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 𝐺 ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							mpompt | 
							⊢ ( 𝑧  ∈  ( 𝑆  ×  𝑆 )  ↦  ( ( 𝐺 ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  ( ( 𝑥 𝐺 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) )  | 
						
						
							| 28 | 
							
								19 27
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  ( ( 𝑥 𝐺 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) ) )  | 
						
						
							| 29 | 
							
								14 28
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 ( ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  ↾  dom  dom  𝐻 ) ,  ( 𝑧  ∈  dom  𝐻  ↦  ( ( ( 2nd  ‘ 〈 𝐹 ,  𝐺 〉 ) ‘ 𝑧 )  ↾  ( 𝐻 ‘ 𝑧 ) ) ) 〉  =  〈 ( 𝐹  ↾  𝑆 ) ,  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  ( ( 𝑥 𝐺 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) ) 〉 )  | 
						
						
							| 30 | 
							
								7 29
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉  ↾f  𝐻 )  =  〈 ( 𝐹  ↾  𝑆 ) ,  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  ( ( 𝑥 𝐺 𝑦 )  ↾  ( 𝑥 𝐻 𝑦 ) ) ) 〉 )  |