Step |
Hyp |
Ref |
Expression |
1 |
|
resfval.c |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
resfval.d |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
3 |
|
resfval2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) |
4 |
|
resfval2.d |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
opex |
⊢ 〈 𝐹 , 𝐺 〉 ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ V ) |
7 |
6 2
|
resfval |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ↾f 𝐻 ) = 〈 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
8 |
|
op1stg |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
9 |
1 3 8
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
10 |
4
|
fndmd |
⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
11 |
10
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) ) |
12 |
|
dmxpid |
⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝜑 → dom dom 𝐻 = 𝑆 ) |
14 |
9 13
|
reseq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) = ( 𝐹 ↾ 𝑆 ) ) |
15 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
16 |
1 3 15
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
18 |
17
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
19 |
10 18
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
21 |
|
df-ov |
⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) |
22 |
20 21
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝑥 𝐺 𝑦 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
24 |
|
df-ov |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) |
25 |
23 24
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
26 |
22 25
|
reseq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
27 |
26
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
28 |
19 27
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) ) |
29 |
14 28
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 = 〈 ( 𝐹 ↾ 𝑆 ) , ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) 〉 ) |
30 |
7 29
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ↾f 𝐻 ) = 〈 ( 𝐹 ↾ 𝑆 ) , ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) 〉 ) |