Step |
Hyp |
Ref |
Expression |
1 |
|
resghm.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
6 |
1
|
subggrp |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → 𝑈 ∈ Grp ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑈 ∈ Grp ) |
8 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑇 ∈ Grp ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
10 3
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
12 |
10
|
subgss |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
13 |
|
fssres |
⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
15 |
12
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
16 |
1 10
|
ressbas2 |
⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
18 |
17
|
feq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
19 |
14 18
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) |
20 |
|
eleq2 |
⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( 𝑎 ∈ 𝑋 ↔ 𝑎 ∈ ( Base ‘ 𝑈 ) ) ) |
21 |
|
eleq2 |
⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( 𝑏 ∈ 𝑋 ↔ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) |
22 |
20 21
|
anbi12d |
⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ) |
23 |
17 22
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ) |
24 |
23
|
biimpar |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) |
25 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
26 |
15
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
27 |
26
|
adantrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
28 |
15
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ 𝑏 ∈ 𝑋 ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
29 |
28
|
adantrl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
30 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
31 |
10 30 5
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
32 |
25 27 29 31
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
33 |
1 30
|
ressplusg |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
35 |
34
|
oveqd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) ) |
37 |
30
|
subgcl |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
38 |
37
|
3expb |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
39 |
38
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
40 |
39
|
fvresd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
41 |
36 40
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
42 |
|
fvres |
⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
43 |
|
fvres |
⊢ ( 𝑏 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
44 |
42 43
|
oveqan12d |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
46 |
32 41 45
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
47 |
24 46
|
syldan |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
48 |
2 3 4 5 7 9 19 47
|
isghmd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |