Step |
Hyp |
Ref |
Expression |
1 |
|
resghm2.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
2 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) |
3 |
|
subgsubm |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) |
4 |
1
|
resmhm2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
6 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝑆 ∈ Grp ) |
7 |
|
subgrcl |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑇 ∈ Grp ) |
8 |
|
ghmmhmb |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
10 |
5 9
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |