| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resghm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | ghmmhm | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  →  𝐹  ∈  ( 𝑆  MndHom  𝑈 ) ) | 
						
							| 3 |  | subgsubm | ⊢ ( 𝑋  ∈  ( SubGrp ‘ 𝑇 )  →  𝑋  ∈  ( SubMnd ‘ 𝑇 ) ) | 
						
							| 4 | 1 | resmhm2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝑋  ∈  ( SubGrp ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 6 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  →  𝑆  ∈  Grp ) | 
						
							| 7 |  | subgrcl | ⊢ ( 𝑋  ∈  ( SubGrp ‘ 𝑇 )  →  𝑇  ∈  Grp ) | 
						
							| 8 |  | ghmmhmb | ⊢ ( ( 𝑆  ∈  Grp  ∧  𝑇  ∈  Grp )  →  ( 𝑆  GrpHom  𝑇 )  =  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝑋  ∈  ( SubGrp ‘ 𝑇 ) )  →  ( 𝑆  GrpHom  𝑇 )  =  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 10 | 5 9 | eleqtrrd | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝑋  ∈  ( SubGrp ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) |