Step |
Hyp |
Ref |
Expression |
1 |
|
resghm2.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
2 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
3 |
2
|
a1i |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) ) |
4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝑆 ∈ Grp ) |
5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝑆 ∈ Grp ) ) |
6 |
|
subgsubm |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) |
7 |
1
|
resmhm2b |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |
10 |
|
subgrcl |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑇 ∈ Grp ) |
11 |
10
|
adantr |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑇 ∈ Grp ) |
12 |
|
ghmmhmb |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
14 |
13
|
eleq2d |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) ) |
15 |
1
|
subggrp |
⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑈 ∈ Grp ) |
16 |
15
|
adantr |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑈 ∈ Grp ) |
17 |
|
ghmmhmb |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑈 ∈ Grp ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) |
19 |
18
|
eleq2d |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |
20 |
9 14 19
|
3bitr4d |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
21 |
20
|
expcom |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝑆 ∈ Grp → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) ) |
22 |
3 5 21
|
pm5.21ndd |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |