Step |
Hyp |
Ref |
Expression |
1 |
|
resgrpplusfrn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
resgrpplusfrn.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
3 |
|
resgrpplusfrn.o |
⊢ 𝐹 = ( +𝑓 ‘ 𝐻 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
4 3
|
grpplusfo |
⊢ ( 𝐻 ∈ Grp → 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 = 𝐹 ) |
8 |
2 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
10 |
9
|
sqxpeqd |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 × 𝑆 ) = ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
11 |
7 10 9
|
foeq123d |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 ↔ 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) ) |
12 |
6 11
|
mpbird |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 ) |
13 |
|
forn |
⊢ ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 → ran 𝐹 = 𝑆 ) |
14 |
13
|
eqcomd |
⊢ ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 → 𝑆 = ran 𝐹 ) |
15 |
12 14
|
syl |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ran 𝐹 ) |