Metamath Proof Explorer


Theorem residfi

Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion residfi ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 dmresi dom ( I ↾ 𝐴 ) = 𝐴
2 dmfi ( ( I ↾ 𝐴 ) ∈ Fin → dom ( I ↾ 𝐴 ) ∈ Fin )
3 1 2 eqeltrrid ( ( I ↾ 𝐴 ) ∈ Fin → 𝐴 ∈ Fin )
4 funi Fun I
5 funfn ( Fun I ↔ I Fn dom I )
6 4 5 mpbi I Fn dom I
7 resfnfinfin ( ( I Fn dom I ∧ 𝐴 ∈ Fin ) → ( I ↾ 𝐴 ) ∈ Fin )
8 6 7 mpan ( 𝐴 ∈ Fin → ( I ↾ 𝐴 ) ∈ Fin )
9 3 8 impbii ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin )