Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | residfi | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresi | ⊢ dom ( I ↾ 𝐴 ) = 𝐴 | |
2 | dmfi | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin → dom ( I ↾ 𝐴 ) ∈ Fin ) | |
3 | 1 2 | eqeltrrid | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin → 𝐴 ∈ Fin ) |
4 | funi | ⊢ Fun I | |
5 | funfn | ⊢ ( Fun I ↔ I Fn dom I ) | |
6 | 4 5 | mpbi | ⊢ I Fn dom I |
7 | resfnfinfin | ⊢ ( ( I Fn dom I ∧ 𝐴 ∈ Fin ) → ( I ↾ 𝐴 ) ∈ Fin ) | |
8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ Fin → ( I ↾ 𝐴 ) ∈ Fin ) |
9 | 3 8 | impbii | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) |