Step |
Hyp |
Ref |
Expression |
1 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐶 ∩ 𝐵 ) = 𝐵 ) |
2 |
|
reseq2 |
⊢ ( ( 𝐶 ∩ 𝐵 ) = 𝐵 → ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) ) |
4 |
3
|
rneqd |
⊢ ( 𝐵 ⊆ 𝐶 → ran ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) = ran ( 𝐴 ↾ 𝐵 ) ) |
5 |
|
df-ima |
⊢ ( ( 𝐴 ↾ 𝐶 ) “ 𝐵 ) = ran ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) |
6 |
|
resres |
⊢ ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) |
7 |
6
|
rneqi |
⊢ ran ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ran ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) |
8 |
5 7
|
eqtri |
⊢ ( ( 𝐴 ↾ 𝐶 ) “ 𝐵 ) = ran ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) |
9 |
|
df-ima |
⊢ ( 𝐴 “ 𝐵 ) = ran ( 𝐴 ↾ 𝐵 ) |
10 |
4 8 9
|
3eqtr4g |
⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) “ 𝐵 ) = ( 𝐴 “ 𝐵 ) ) |